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Quantum and quasiclassical expressions for the angular distribution of photofragments from an
initially polarized precursor molecule are compared under the conditions of a one-photon electric
dipole transition to a repulsive state followed by prompt axial recoil into two separating fragments.
The treatment is most readily applicable to diatomic molecules, but it is more general than that. It
is shown that when the rotational and electronic angular momentum J; and its projection along the
body-fixed z axis {); are well defined in the initial state, the quantum and quasiclassical expressions
are identical for any initial polarization of the molecule prior to photolysis and for all values of J;
and ();. For the particular case of an |J,{);M;) selected state this is in agreement with a previous
result [T. Seideman, Chem. Phys. Lett. 253, 279 (1996)|. Moreover, the quasiclassical expression is
still a good approximation even when the initial state is a coherent superposition of |J;,€;,M,)
levels for the same ();. This near identity still pertains even when (); is not well defined for a parallel
transition (AQ=0) but fails for a perpendicular transition (AQ= * 1) if the initial state is in a
coherent superposition of (), states differing by =2. These conclusions apply to preparation schemes
employing optical excitation, static inhomogeneous and/or homogeneous electric and/or magnetic
fields, as well as to molecules physisorbed on solids or clusters. We discuss the importance of these
results in the interpretation of photofragment distributions when some other angular momenta are
involved, such as electronic angular momentum, with and without nuclear spin, coupled to
molecular rotation, asymmetric top rotational angular momentum, or internal vibrational angular

momentum in polyatomics. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.3000581]

I. INTRODUCTION

Unimolecular photodissociation produces in general an-
isotropic distributions of the products fragments’ relative ve-
locity v and their angular momenta j.l’3 These vector prop-
erties have received considerable experimental and
theoretical attention 1ately4_6 as a means to obtain crucial
information on structure, symmetry, and energetics of disso-
ciation dynamics as well as a way to produce polarized frag-
ments for use in applications such as spin-dependent effects
in atomic, molecular, and surface physics.

The quantum mechanical treatment of the angular distri-
bution of photofragments under the conditions of a one-
photon electric dipole transition in a diatomic molecule was
derived by Zare."® For an initially isolated randomly ori-
ented precursor molecule photodissociated by linearly polar-
ized light, the laboratory angularly resolved photofragment
intensity has the now familiar expression

1(6) o< 1 + BP5(cos 6), (1)

with the laboratory Z axis chosen to be in the direction of the
electric vector of the light beam. The anisotropy parameter 3
in Eq. (1) involves the sum products of radial matrix ele-
ments and 3—; symbols depending on the initial J; and final
J=J;, J;=1 total rotational quantum numbers, as well as on
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the initial €); and final {) quantum numbers associated with
projection of J on the internuclear axis. For prompt dissocia-
tion, for which the axial recoil approximation is valid, B
takes the limiting values +2 and —1 for pure parallel (AQ)
=0) and pure perpendicular (AQ==*1) transitions. These
limiting values can be interpreted classically since they cor-
respond, respectively, to a cos’  and a sin?> § absorption
probability, i.e., proportional to |u- €|?, where u is the elec-
tric dipole transition moment and ¢; is the light polarization
vector.

In addition to the case of initially randomly oriented tar-
gets, the angular distribution of the photofragments from an
initially selected J;,€);,M; state was also considered.®™"? Tt
was shown that the angular distributions are highly oscilla-
tory involving Legendre polynomials up to 2J;+2.

More recently, Underwood and Powis'” in their study of
photodissociation of polarized diatomic molecules and
Dagdigian14 in the case of vibrationally mediated photodis-
sociation considered the generalization of the above to an
oriented or aligned initial state. The calculations involved
lengthy angular momentum algebra. Even in the axial recoil
limit, the final expressions involve the product of six 3—j
symbols. On the other hand, the photofragment angular dis-
tribution following photolysis of an ensemble of symmetric-
top molecules in a single |J,K;M;) state (K; replacing the (),
in this case) has been analyzed by Choi and Bernstein'"” us-
ing a simple quasiclassical equation of the form
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1(6) o PJ[KIM[(Q)[] + BP;(cos 0)], (2)

where P JiK[Mi(ﬁ) is the (quantum) initial probability to find
the prepared molecule with its axis pointing between # and
0+d@6. This very simple equation based on intuitive assump-
tions concerning the initial angular distribution and prompt
dissociation was discussed more rigorously by Zare'® and by
Taatjes et al."” who suggested modifications to take into ac-
count the orientation of the transition dipole moment in the
molecular frame and the finite dissociation time. The general
validity of Eq. (2) has been questioned because at first sight
it appears to be very different from the quantum expression.
However, comparison of Eq. (2) with experiment showed
good agreement in most cases.'™!” Seideman® compared the
quantum and the quasiclassical expressions for the M; se-
lected case and concluded that both are identical if it is as-
sumed that the scattering wave functions are independent of
the rotational branch (axial recoil limit) and that the transi-
tion dipole vector is very simple (a pure parallel or a pure
perpendicular transition).

The study of angular distributions for a general initial
state concerns molecules which have been prepared by opti-
cal excitation, static inhomogeneous and/or homogeneous
electric and/or magnetic fields, as well as molecules phys-
isorbed on solids or clusters. The comparison between the
quantum and the quasiclassical approaches can therefore be
of importance to (1) the assessment of the validity of the
quasiclassical equation (2) which being a very simple ex-
pression can be very useful to design and interpret experi-
ments and (2) the determination of in which cases quantum
interference effects must be taken into account. Thus, this
formulation provides additional information on the proper-
ties of the initially prepared state.

In this paper we present new theoretical evidence show-
ing that the quasiclassical formula [Eq. (2)] has a wider
range of applicability than previously thought. The quasiclas-
sical and quantum expressions are identical for an initial
J;,Q); state for all possible distributions of M, i.e., whatever
is its polarization. In addition, the quasiclassical expression
is still a good approximation even when the initial state is a
coherent superposition of |J;,();, M;) levels for the same ;.
This near identity still pertains even when (); is not well
defined for a parallel transition (AQ=0) but fails for a per-
pendicular transition (AQ= *1) if the initial state is in a
coherent superposition of (), states differing by *2, in which
case quantum interference effects are present.

The organization of this paper is the following. In Sec. II
we present the exact quantum and the axial recoil limit ex-
pressions for the photofragment angular distribution of a sys-
tem in a completely general initially prepared state described
by its multipole moments and dissociated via a one-photon
electric dipole transition. In Sec. III the corresponding qua-
siclassical equation (2) for the same general initial state is
rewritten in terms of a sum of spherical harmonics. This
formulation allows a direct comparison with the quantum
results; this comparison is presented in Sec. IV. In these sec-
tions the initial state is just described as a general linear
combination of (J;,€);,M;), where J; is the molecular rota-
tional angular momentum interacting directly with the pho-
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ton field. In Sec. V we discuss how to include other angular
momenta that may couple strongly or weakly to the rota-
tional angular momentum, in particular, nuclear spin. We
also discuss the common situation where the system is pre-
pared in a coherent superposition of eigenstates and there is a
time delay Ar between the preparation step and the photoly-
sis laser pulse. In this case oscillations as a function of At are
expected.

Il. QUANTUM TREATMENT

The angular distribution of fragments from an initial | ;)
state excited by a transition operator 7 to a final repulsive
state at total energy E is given by

Lpan(0.9) = X 2 27+ D)2 + 1)

JJ' MM’

Q

x(@i|Tlgh™ ByDY,, o (¢,6,0), (3)

where the Dﬂﬂ(g{), 0,0) are Wigner rotational functions with
the phase conventions of Ref. 21 and the |@f'") are final
state continuum states labeled by the good quantum numbers
J,M corresponding to the (rotational and electronic) angular
momentum J and its projection along the laboratory Z axis
and by () the quantum number associated with the projection
of J along the body-fixed z axis. The body-fixed frame is
obtained from the space-fixed frame through positive rota-
tions with Euler angles (¢, #,0) so that R, the vector con-
necting the centers of mass of the two fragments, lies on the
body-fixed z axis. It should be noted that J.=(J-R)/R com-
mutes with the Hamiltonian only in the limit R—o. Al-
though () is not a good quantum number, it is always pos-
sible, however, to define continuum states labeled by the ()
value to which they correlate adiabatically for R — . Thus,
in general we have

J* JE
e’ = 2 27+ 17D, 5(6.0.0)|, ). )
Q
where the |z/1§6) behave asymptotically as'?
e okR . oikR
|¢Q,Q>Rim5n,67 )+ Q,Q(E)Tm% (5)
with
—_—
k=\2m(E - V())/h, (6)

where m=m mpg/(m4+mp) is the reduced mass for the rela-
tive motion of the products A and B, and V() is the frag-
mentation limit. In Eq. (4), |€)) are orthogonal states depend-
ing on all internal coordinates (electronic and nuclear) of the
fragments. Finally, S?) ()(E) is the scattering matrix corre-

sponding to the full collision between A and B. The particu-
lar form chosen in Eq. (5) corresponds to outgoing spherical
wave boundary conditions often denoted by a (-) super-
script.

Using the Clebsch—Gordan series,”! Eq. (3) can be recast
in the form
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[quant( 6’ ¢) o 2 (2L +1 )UZYL)\(B’ d’)
L\

XD D D (=) Mg+ 1) 220 +1)2

20 MM Q2
X(J J' L)(J J' L)
M -M -\)\Q -Q 0

X{ Tl o) @i TIgh ™). (7)

Equation (7) provides the most general angular distribu-
tion of fragmentation into two fragments. The operator 7 can
represent a one-photon or a multiphoton transition operator
for the case of direct photodissociation or an intramolecular
coupling T=H—-H, for the case of predissociation, in which
case ¢; is an excited bound state of H,,.

A. One-photon electric dipole transitions

For one-photon electric-dipole-allowed transition we
shall have Tx u-€;, where €; is the photon polarization vec-
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tor and u is the electric dipole moment operator. A general
initial state of the system prior to photolysis can be written as

led o 2 agam(2)i+1)"2Dy Q(qsey)l% (8)
JQM

where |Ws’i> are orthogonal vibronic kets depending on all
electronic and vibrational coordinates. It should be noted at
this point that the body-fixed axis of quantization corre-
sponds to the vector distance R between the center of mass
of the two moities giving rise to the products. Only for a
diatomic and some other particular cases, it will coincide
with a bond axis or a symmetry axis of the molecule. For the
ABC+hv— A+BC case, for instance, R will be the vector
from A to the center of mass of BC which in the nonlinear
configuration and finite R will not coincide in general with
the principal axis of inertia. Therefore, an initial nonlinear
bound state of ABC will be a linear combination of (); states.
Using

J1 T
(00" - eley =27+ D" X al QM7+ 1) (—)ﬂ(e,-)_n< )
1.00M; n M; -n M
~( J; 1 J JE .
X 2 (_)M_Q ~ <¢Qﬁ|(”’)q|¢f§i>’ (9)
5 -Q;, —-qg QO ’ !
0,.4.0
one gets

I quant( 0, d’)

E(2L+1)“2m 0,2 > > ()" M21+1)(2J’+1>(J ”

L)(J J' L)
-2\ -0 o

7 Mm@ -M
J; 1 J 0 Ji J JE
X 2] +1 172 n, < L ) _\M-Q B _ J
B QEM ( ) 2 ( ) (6) Mi -7 M E~( ) _ Qi Q <¢/Q’Q|(ﬂ)q|l/lﬂ.i>
x 2 (@ +1)1’22( )”(e)_ﬂ( ’ : )
7.0 M| M; -7 M
x >, (—)M’-ﬂ’( : ,><¢m,|(u) |¢Q, | pl T ML), (10)
Qlf,q',ﬁ' - q Q
where
<J,{QLTM,‘,|P|JiQiMi> = a;’ﬂ.’M.’aJiQ,-Mi (11)
are the elements of the initial-state density matrix. Introducing the covariant multipole moments of the initial state via
! ! Jf-M.’ 1/2 Ji Jl, Ki ! ! !
pxo Q1) = 2 (=) MK+ 1) o QM Pl M) (12)
! , M; -M; O
M.M]
with its inverse
! ! ! .] M 1/2 J Jl’ K
QM| |plg: QM) = (-) > (2K;+1) pKQ(J O/, JQ), (13)
K,.0; M; -M; QO

we can rewrite Eq. (10) as
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2 QL+D"Y,\(0.¢) > X

KiQi y,0,.0].0]

xS () &), ()7 (€,
7 "

1 quant( 0, ¢)

Q.q.0.4'Q" IS’
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P01 QLT Q) 2K+ )27+ D20 + 1)

> DI+ DRI +1)

oo d I L J; L J J] 1 J IE
X(—)’f*“‘“‘“( )( ~)( , ~, <o 5l ¢f'><t/f |
Q-0 0/\-9;, -¢q Q/)\-Q/ -¢ & mz| | 2/ \%0,0
J! % ’ ' ’
X(ﬂ)q’|¢d{> SI(J»J ’L9)\’Ji>]i’Ki’Qi’ 7n )’ (]4)
where
i 1 J\(J T L J! o
S](],],,L,)\,Ji,-]l‘,,Ki,Qia 7]’ 77,) = E (_ )M _Mi< )(M M/ )\)( ’ ! ’ )
Mot M -M; —-n M - - -M; -7 M
Jo JK;
X , (15)
M; -M; O
involves the sum over all space-fixed components. Using Eq. (A2) of Appendix A we can write Eq. (14) as
Tquand(6, ¢)«E(2L+1>“Ym(a $) 2 ()NCK+ D X 20+ D)2+ 1) Ppg o (10T
KinQ; 110,070
, s o (P K L , J J L
X2 2P+ 1)PEp, D (=)l -1( )2(-)1 (2J+1)(2]’+1)( )
Pp Q,q,ﬁ,q'()' 14 Qi A J.J' Q _Q 0
VA AV A bdid e
o g allca g g )IF 5 L Wy 1) [0 ) 6 () 0 (16)
' ' 1 JJ

where

Epy(€)=QP+1)"? 2 (=)7
7.7’

xe e [T (17)
T\—y oy —p

is the light polarization tensor.

Equation (16) constitutes the most general rigorous ex-
pression for the fragments’ angular distribution in a one-
photon electric dipole photodissociation process for a general
initial state described by its multipole moments PK0s and it
is valid for integers as well as for half integer quantum
numbers. The covariant multipole moments defined
by Eq. (12) are normalized such that py(J;,€2;)
=2 (M |l M) (204 1),

Because from Eq. (17) P is restricted to 0, 1, and 2
(one-photon electric dipole transitions) and from Eq. (12) K;
runs from O to J; ., the angular distribution includes spheri-
cal harmonics up to L, =2J; na+2. This result is well
known,"® and it also applies to photoionization from oriented
molecules.”? As it has been noted before,13 if the Q,;,=0 are
the only nonzero elements of PK,0, (axially symmetric initial
state), then for linear polarization (p=0 if the laboratory Z
axis is chosen along the polarization vector of the photon)

we have A=0 and the angular distribution is also cylindri-
cally symmetric around the laboratory Z axis. If Q;# 0 ele-
ments are nonzero, then even for linear polarization the an-
gular distribution will be noncylindrically symmetric and
dependent on ¢.

B. Prompt fragmentation: Axial recoil limit

In the axial recoil limit where fragmentation is fast com-
pared with the rotational period of the system, the following
follows.

(I) The body-fixed projection () of the final state is an
almost good quantum number [Coriolis (or helicity) de-
coupling].

(2) The radial matrix elements of the transition dipole op-
erator (Y/lq|(m), |gb” ) for J=J;, Ji%1 depend very

little on J (branch 1ndependent)

Under these conditions, we can replace in Eq. (16) Q

=0'=0 and (Wl Wlia) for (J=J, J;=1) by
<%nl(u)q|w;_9v> with the result (see Appendix B)
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Luani(6, ¢)°‘E(2L+1)1/2Ym(0 B> X ()L DI+ )2 QK+ 1) P pg o (11T

J “1] Q K Ql

Ji T K; P K, L

><< D )E 2P+ 1)“2Ep,,(e)( )

QO -9 QO -Q/%5, p O \

[ P K, L\(1 1 P .
X2 (=) , , , | IM (T, Q)M (J],Q), (18)
o q9-q" L=Q 0/\~q ¢ q-¢
where we have defined

M (00 = (U gl ()]0 (19)

1. Linearly polarized light

For linearly polarized light along the laboratory Z axis p=0 and only P=0 and 2 contributes to Eq. (17). We then have
from Eq. (18),

laun(0.8) = Z Y09 3 2 (- Vi 1) 220+ 1) o (0] )EpK N Q,Jm(J" ; QIiQ)

J QtJ Q Qi _Qi,
V30 2 K, L ) K, L
X | .16 ,_*+—2L+11/22K,.+1“2( ' ) —Q( '
[ Ki’L Qi’o’i( ) G'Qi(.]i,.]i’)( ) ( ) 0 _)\ )\ 2,( ) qr_q QI Q O
1 1 2 «
X ( ) , )Mq(Jl-,Q,-)Mq,(Ji' Q)), (20)
-9 9 49—49
|
where we have defined Pi(6,p) = > (JIM] Q| plT M)
. Jid{ MM{
o (Jnd]) = 2 M (T, Q)M(J], Q). (1)
q

><(2Ji+ 1 )1/2<2J; + 1)”2
4ar 4

This result can be compared to similar expressions found

by Underwood and Powis."? With an obvious change in no- w0 . J K,
tations, Eq. (20) agrees with Eq. (2.30b) of Ref. 13 except X(=)Mi% X 2K+ 1) M. M 0,
for a missing factor (2P+1)"? which has been corrected in K 0; ! L
23 ’
an erratum. (Jf i Ki)DK' ($.6,0) (23)
Q - o/ e

and in terms of the initial multipole equation (13), it reads
lll. QUASICLASSICAL TREATMENT [compare with Eq. (7.6.6) of Ref. 24]

A. The initial angular probability

With ¢; given by Eq. (8), the probability density of find- o 2it1 V2o 4 1\2
ing the molecule’s body-fixed vector R pointing into the P(6,9)= X (=) .
solid angle element d(cos 6)d¢ along (6, @) is given by Jpd 1
X 2K +1)? J QLT
PODE D UMM+ 1) 2 K g U10,0,2)
Jid{ MM, ,
(Ji i Ki)DK' (¢,6,0) (24)
, 4 J’ [_ s Uy )
X (2‘]1 + 1)”2D1A14iﬂi(¢? 0’ ’y)DAéi’Qi(¢7 0’ '}’), Qi - Qi 0 00
(22)
and we note that it may depend on the azimuthal angle ¢
with (J/M[Q,|p|lJ.Q;M;) defined by Eq. (11). in addition to the polar angle 6. Obviously, it cannot depend
Using the Clebsch—Gordan series,21 we can write on v.
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B. The quasiclassical angular distribution of the
fragments

Generalizing Eq. (2) we write, for linearly polarized one-
photon electric dipole excitation,

Iclass(a, ¢) o Pi(a’ d’)[l + IBPZ(COS 0)]7 (25)

where P; may depend on ¢. In Eq. (25) the 8 parameter
takes, for fast dissociation, the limiting values of 2 and —1
for pure parallel and perpendicular transitions, respectively.
It may be modified, however, to take into account a finite
dissociation time and the angular spread between the recoil
direction and the transition dipole moments.'

Using again the Clebsch-Gordan series with P,(cos 6)
=Déo(¢, 0,0) we obtain

K, L
P,(cos 0)DQ0_E(2L+1)<0 0 )\)

x(2 Ki )DL (¢,6,0), (26)
0 0 o0
from which we conclude that Q;=—\. Therefore,

Iclass(6’¢) EYL)\(G ¢) 2 ( )j Q(ZJ +1)1/2

JJQ

X(ZJ," + 1)1/22 pKl.—)\(Ji,Qi,JiQi)
K.

i

{2 5 e
Q -0 o/

+BRL+ 1)'?Q2K, +1)"?

(2 K L><2 K L)}
X . (27)
0 -x x/\0 o0 o0

The total photodissociation cross section is proportional
to the L=0 term in Eq. (27),

Tt © 1+ B 2 (=) %20+ 1227 + 1)

Ji,J-',Q»

J; 02
X

(Q,- 0, 0)2( (M,» _M, 0)
XM pl T QM) (28)

The first term comes from the normalization of the initial
angular probability P;(6, ¢). The second one is the L=0 con-
tribution of the degree to which the polarization of the light
is matched or mismatched with the degree of initial align-
ment of the molecule’s transition moment in the laboratory
frame.

IV. COMPARISON BETWEEN CLASSICAL AND
QUANTUM ANGULAR DISTRIBUTIONS
AND CONCLUSIONS

The main subjective objection to the use of the quasi-
classical equation (2) is based on the difference between this
very simple formula and the complicated quantum expres-
sion [Eq. (20)]. In fact, when expressed in terms of a sum of
spherical harmonics the quasiclassical equation (27) and the

J. Chem. Phys. 129, 164315 (2008)

quantum equation (20) angular distributions show a striking
similarity. In fact, the main difference is the double sum over
; and () in the quantum equation whereas in the quasiclas-
sical expression only a single sum over (); is needed. It is
then expected that if the initial state is incoherently prepared
in (); the two treatments will agree with each other.

A. Incoherently prepared (2; states

When (); is well defined but the system is in a coherent
superposition of (J;,M;) states, such as the situation encoun-
tered with pendular states, we have from Eq. (20)

Iquam(o’(ﬁ) E YL)\(o ¢)E ( )J 9(2-] + 1)1/2
Jid!
Ji J K,
><(2J{+1)”2¢TQ,.(JI‘J;)(Qi _0, O)
X[fski,L(— ™+ ,3(21.(11‘,",-,)(214‘Ir nHh?
2 K, L\(2 K; L
><(2K,»+1)”2< )( )]
0O —-N AN/NO O O
(29)
with
" V30 2
ﬁﬂi(‘]i"]i) Q(]l,.] 2( )q( q O>Mq(Ji’Qi)
XM (J7.€0,), (30)

which gives B=2 for pure parallel transitions (¢g=0) and B
=—1 for pure perpendicular transitions (¢g= * 1). In the axial
recoil limit, the matrix elements M (J;,();) are slowly vary-
ing functions of the total angular momentum, and so within
this approximation we can neglect the dependence of these
matrix elements on J; if the number of J; values involved in
the decomposition of the initial state is not very large. In that
case, Eq. (29) becomes identical to the quasiclassical equa-
tion (27). Of course, this approximate identity holds even
more closely if the initial state is J; selected for any combi-
nation of magnetic levels M,, i.e., whatever is the polariza-
tion of the initial state. For the particular case of an initially
selected M, state this concurs with the conclusion reached by
Seideman®’ using a different formalism.

Equation (29) is easily generalized to sum over a set of
incoherently prepared (); states with their proper weighting.

B. General initial state

As discussed before for a general linear combination of
); states, the quantum and quasiclassical expressions are
similar but not identical. However, for parallel transitions g
=¢’'=0 and Eq. (20) reduces to
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Tuan(0.8) & 2 Y10 (6,8) 2 > (=)~ %(27,+ )12
L\

WY
X (207 + D)Mo, Q)M (U], L)
5o K,»)

1

X INVAONO)
%Pki )\(z i )(Qi ~0, 0

i

x{&,@L(— M +22L+ 1)'2(2K;+ 1)

(2 K, L)(Z K L)}
X . (31
0 -x A/\o 0 0

which can be compared with the classical expression [Eq.
(27)] with B=2 (as it should for parallel transitions). Because
the M ,(J;,();) matrix elements are slowly varying functions
of J; and (), the quantum and classical expressions are iden-
tical if the number of J; quantum numbers involved in the
decomposition of the initial state is small.

On the other hand, for perpendicular transitions, in addi-
tion to the terms in Eq. (20) with g=¢g’, which give again a
very good correspondence with the classical expression,
there are additional contributions with /=€, *2. In this
case interference terms coming from coherently superim-
posed (); states will contribute to the angular distribution of
the fragments.

V. THE CHOICE OF THE INITIAL STATE BASIS SETS
AND OTHER ANGULAR MOMENTA

In writing Eq. (9) we are implicitly considering a basis
set (J;,€);,M;) corresponding to rotational plus electronic an-
gular momenta. For a diatomic molecule, for instance, ();
will be the projection on the body-fixed frame of the orbital
plus spin electronic angular momentum for Hund’s cases (a)
and (c) basis sets or the orbital electronic angular momentum
for a Hund’s case (b) basis set in which case (J;,();) are
replaced by (N;,A;). In all cases there will be couplings
(weak or strong) that mix different ); states. In addition, in
many cases the coupling of the rotational angular momentum
with the nuclear spin must be taken into account.

To describe rotation of polyatomic molecules, the
symmetric-top eigenstates are used with (); being replaced
by K;. In the case of asymmetric tops, it is necessary to
consider a sum over K; values. In addition, for polyatomic
molecules vibrational angular momenta must also be consid-
ered in the definition of the basis set.

These couplings are also operational in the final disso-
ciative state. Provided that the separation of the photofrag-
ments is much faster than the recoupling time, these cou-
plings may be simply taken into account by considering their
effects on the initial state only. To illustrate this point, con-
sider the case of the effect of nuclear spin on the angular
distributions.

For a free molecule for which the total nuclear spin is
not zero, the stationary states of the system are eigenstates of
the total angular momentum F=J+1. Because the hyperfine
interaction is small compared with the rotational spacing, to
a very good approximation these eigenfunctions can be writ-
ten as

J. Chem. Phys. 129, 164315 (2008)

|F QM) = > (=)rME(QF 4 1)1
oMM,

Ji 1
X
M; M,
If the initial state is prepared in a |F,Q;M Fi> state, we
have p=|F, QM )(F{Q;Mp|. Recall that the electric dipole

transition is independent of nuclear spin, the angular distri-
bution will be proportional to p;=X,, (IM JplIM)), and

F;
_MFi>|IMI>|JiQiMi>- (32)

<J;Q,'M,, |p1|JiQiMi>

Ji 1 F
= 51:"’11‘59,"'91‘2 (2F,~+ 1)( )
M,

Ml, MI _MF’.
J, I F
X ) 33
v, My (33)
From Eq. (12) we then have
pK[-Q,-(Ji,Qi’ JiY)
=8y 000, 2 ()TMIQK+1D)2QF+1)
MMM,
(Ji Ji Kl) Ji 1 Fi
X
M; —M,{ 0, Mi, M, _MF,-
J, I F .
X .
"y My (34)

Using Eq. (4.15) of Ref. 21 Eq. (34) can be written as
px0,Ji Y JikY) = 5Q,,051;,Ji50;,0i(_ )HrkiK+ 1)1

F; F; K;
><(2F,~+1){J }

i ‘Ii I
(F,- F, K,-> s
X .
My =Mp 0 (35)

On the other hand, if a [J,Q);M;) state is initially prepared,
from Eq. (12) we have

Pk,0,Ji i JikY) = 65,00y 1,007 0,(~ )/TMi2K; + 1)1

Ji Ji K
x( ) (36)

and a comparison between these two expressions reveals that
in the case of a hyperfine prepared initial state |¢;)
=|F,. QM F,.>’ the polarization moments are reduced by the 6
—j symbol with respect to those of the |¢;)=|J;Q;M,) state.
The latter is actually a linear combination of the eigenstates
of the system so that in this case the angular distributions
will depend on the time delay Ar between the preparation
step and the photolysis pulse. This is the analog of depolar-
ization by nuclear spin of molecular fluorescence. In an op-
tical excitation scheme that takes place prior to photolysis,
the molecule can be prepared by a pump pulse of duration
short compared with the hyperfine period and J can be ori-
ented or aligned with respect to the laboratory frame just as
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if the nuclear spin were absent. But during the time delay
between the pump and the photolysis pulse, J precesses
about the total angular momentum F and so does the mo-
lecular axis R. Hence the angular distribution must show a
dependence on the time delay Az. This situation is general
and applies to all other cases of angular momentum cou-
plings discussed above.

It should be noted that in the case of adiabatically pre-
pared pendular states in a dc field,'*?® the system is in a
thermal mixture of molecule-plus-field eigenstates |¢;)
== e Ji|J ;M ), so although there are linear combinations of
J; eigenstates there will be no dependence of the angular
distribution on the time delay Atz.

The above treatment is quite general, and it is hoped that
it will serve as a starting point in interpreting many different
photodissociation experiments such as those involving mol-
ecules prepared prior to photolysis by optical excitation,
static inhomogeneous and/or homogeneous electric and/or
magnetic fields, as well as molecules physisorbed on solids
or clusters.

Extensions of the semiclassical equation (25) can also be
readily implemented: (i) circular polarized or unpolarized
light in which case the 1+ BP,(cos 6) must be replaced by
the corresponding expression and (ii) multiphoton photodis-
sociation where for intermediate nonresonant transitions 1
+BP,(cos 6) should be replaced by 1+ B,P,(cos 6)+---

+ BonPon(cos 6).
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APPENDIX A: A SUM INVOLVING THE SPACE-FIXED
COMPONENTS OF THE ANGULAR MOMENTA

From Egs. (10) and (11) of Ref. 27, Chap. 12, with the
identification p=J;,y=M;,q=J, k=M ,r=J",p=M',s=J!, 0
=M!,a=1,a=n,b=L,B=-\,c=1,y=-7',d=K;,6=-0;,x
=P,é=—p we have

E (- )Ji—Ml-+J—M+J’—M’+Jl.'—Mi' <J i1 J )
MM MM M m -M

X(J L J )(J 1 J )
M -\ -M')]\M' -y -M!

(J-’ K, J; )
X
M -0 -M,

l

/A

Pp 77
A
L P K
x()\ Q)PK,.L, (A1)
P2y oy

and using the symmetry properties of the 3j symbols we can
rewrite this equation as

s (_)M,_M_,( sl J)(J J L)

= -M; -y M)\M -M' -\
MM .MM

X( 7o J’)(J,- J! K,»)
-M; -y M')\M; -M] O,

' , 1 1 P
— 2 (- )Kl-+J —Ji-1+7y (2P + 1)( ’ )
P.p -nn -p
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NSF CHE 0650414. Introducing O=0'=Q in Eq. (16), we obtain
Luan(6:9) = 22 QL+ D)"Y 3(0.0) 2 (<)NQK+ D' 2 pro (/0] J2) 21+ )27} + 1)
LA KinQ; 11 001.0]
<Serein, 3 @it K0S Craenero(! 7))
Py O’ p Qi A\ o Q-0 0/\-Q; —-¢g Q
1 J; J
Ji [ E J. 'E Tl
X(_ o -g' Q) P K; L <Wg]),g|(ﬂ)q|¢di><${),g|(ﬂ)q'|lﬁ();) ) (B1)

g

and replacing (q|(m) |W/ o), (J=J;,J;%1) by (Wi |(m) | ) and using Q=0 +q'=Q;+¢, we obtain
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[quant(e’ ¢) o E (2L + 1)1/2YL)\(05 d’) 2 (_ )Ki(zKi + 1)1/2
L\ K;,0;

Pp a.q'
J s
X(ﬂ)q’|ld{> SZ(Ji’Ji”Qi"Q‘i”qsq,’P’Ki’L)’

with
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, N
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P K L

QO -0 0/\-Q; —qg Q/\-Q] -¢" Q

g
(B3)

From Eq. (39) of Ref. 27, Chap. 8 and the identification a=J",a=-Q,b=J;,B=-Q/,c=1,y=—q',d=L,5=0,e=K,,
e=—p'.f=P,p=p',g=J;,n==0Q;,j=1,u=—q.k=J,k=-() we can write

! ! ! 1 Jll ],
> ( )J’(21+1)(2J'+1)( oo )( il L J) P K L
! o —l -0, —-¢g Q/\0 -Q 0 i
7 i 4 a4 Vg
ol Kio P L[ K J. T \(P 1
= E (_) a ’ ’ ' ' ' ’ ’ (B4)
R -p P -pt =0 Q" -4 g
which using the symmetry properties of the 3—j and 9—; symbols provides
, ) o POKi LN 0 Ko \(1 1 P
SZ(]i’Ji’Qi’QDQ’qvq,vPvKisL) =E (_) i ’ ’ ’ ’ 2 r e (BS)
/ -p'p O -Q; -p'/\-q q¢ -p

p

Using this result into Eq. (B2), Eq. (18) is obtained.
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